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of Curvilinearly Aeolotropic 

S U M M A R Y  
The problem of the simple torsion of a cylinder possessing aeolotropy defined relative to an orthogonal curvilinear 
coordinate net is formulated in terms of a stress function. The method of solution of the boundary-value problem 
for this stress function is indicated, and the torsional rigidity is obtained for both a solid and a hollow elliptic cylinder 
with a particular type of curvilinear aeolotropy. 

1. Introduction 

In a recent note [-1] it has been shown that the problem of the small twist of a cylinder of general 
cross-section formed from curvilinearly aeolotropic material exhibiting certain elastic sym- 
metry properties reduces to that of the classical Saint-Venant torsion problem, in that a 
warping function can be introduced which is determined as the solution of a boundary-value 
problem of the Neumann type. A feature of the problem is that the elastic aeolotropy is 
referred to a set of curves one family of which is parallel to the generators of the cylinder, and 
two other families of curves which are located parallel to the right sections of the cylinder 
and form an identical orthogonal net in each section. It has been found possible to extend the 
solution of the basic torsion problem to include a greater range of material symmetries. To 
this end it has been found convenient to set up the elastic stress-strain relations by means of 
the tensor analytic approach given by Adkins [2] for the finite torsion of a circular cylinder, 
due emphasis being given to the fact that the problem considered in the present article refers to 
the infinitesimal torsional deformation of a cylinder of general cross-sectional geometry. 

It has been pointed out by Lekhnitskii [-3] that materials of the curvilinearly aeolotropic 
type may exist as a result of processes involving the extrusion of wires and the manufacture 
of pipes, and in prismatic structures involving a large number of similar elements. 

2. The Warping Function 

If the curves defining the material aeolotropy of an elastic body form an orthogonal net defined 
by the curvilinear coordinates 0 i (i = 1, 2, 3), then [2] the stress tensor ~J (i, j = 1, 2, 3) and the 
infinitesimal strain tensor 7ij (i, J =  1, 2, 3), both referred to the 0 f coordinate system, are 
related by 

~ ' J =  ~ + . (2.1) 

Here W is the strain energy function for the material, and for curvilinearly aeolotropic material 
W is a function only of the physical components 7,j) of the strain tensor 7~, and 

~)(ij) = 7 ( j i ) :  7ij/(giigjj) ~ , (no sum o n  i , j )  (2.2) 

when the curves defining the aeolotropy are orthogonal. It follows from (2.1) and (2.2) that 

~'J= 2(g, gjj)~ + , (no sum on i,j) (2.3) 

when W is expressed as a symmetrical function of 7(i j) and 7(j0. 
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In the subsequent analysis it will be assumed that a repeated index implies summation over 
all the values of that index. 

For small deformations of the material the strain energy function W can be assumed to be 
a quadratic function of ~(ij), so that 

1K'ijkl . . . .  (2.4) 
W ~ ~L ,  Y(ij)~(kl) , 

w h e r e  E iJkt (i, j ,  k, l -~ 1, 2, 3) are constants, and without loss in generality 

g i j  kl = E k l i j  ~ g jlkl ~ E l i  lk . 

From (2.3) and (2.4)it follows that 

~ =  E~Jk~7(k~/(gi~gjj)~ (no sum on i,j) 

and further by use of (2.2) 
3 3 

ziJ= Z Z EiJk'ykt/(gugJJgkkgU)~ (2.5) 
k = l  /=1 

with no sum on i, j. 
If the elastic body is cylindrical in form rectangular Cartesian coordinates x ~ (i= 1, 2, 3) 

can be introduced with the x 1, x 2 axes located in a typical section S of the cylinder and the x 3 
axis in a direction parallel to the generators of the cylinder through a base point O in S. The 
equations of the curves defining the aeolotropy are considered in the parametric form 

X 1 = x l ( 0 1 ,  02) ,  X 2 ~--- X2(01,  02) ,  X 3 = 03 , (2.6)  

with a non-vanishing Jacobian J. Alternatively another notation may be introduced, viz. 

xl - x, x Z -  y, x3 =- z, 0 1 - 4 ,  0 2 - ~ / ,  (2.7) 

so that the first two members of (2.6) become 

x = x(~, q), y = y(~, ~/), (2.8) 

and we write x~= ~x/0r x , - g x / @ ,  etc. 
The corresponding covariant metric tensor is defined by 

with xk~ ~ OXk/O0 ~, and in the notation of (2.7) we have 

g~t = A2, g22 = B2, g33 = 1, gij = 0 ( i# j ) ,  (2.9) 

where 

A = (x~+y~) ~, B = (xZ+y~) ~ , (2.10) 

and since the curves defining the aeolotropy are orthogonal g12 has been equated to zero, 
implying that 

x~x,+y~y,  = 0. (2.11) 

Similarly the contravariant tensor g~J has components 

gll = 1/A 2, g22 = I/B 2, g33 = 1, gij= 0 ( i~ j ) .  (2.12) 

By use of (2.11) it is seen that the Jacobian of the transformation (2.6) has the value 

J = x~y; I -  x,y~ = A B ,  (2.13) 

and thus for non-vanishing J we must have A # 0 and B # 0 in S. 
If u~ (i = 1, 2, 3) are the Cartesian components of the displacement referred to the x ~ axes, 

then for small displacements the strain tensor e~j is defined by 

ei ~ = 1 \~x  J + ~x'J" (2.14) 
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When the cylinder undergoes simple torsion with uniform small twist 0 per unit length of 
the cylinder the displacement components may be assumed in the form 

Ul = -Oxex 3, u2 = Ox3x 1, u3 = Oc~(x 1, x2), (2.15) 

where O(x 1, x z) -49(x, y) is the warping function. In the notation of (2.7), it can be deduced 
from (2.14) and (2.15) that the only non-zero strain components are 

e23 =2~0y + ' e3l = 2 \0x -- y ' (2.16) 

The corresponding strain components 7ij referred to the 0 i curvilinear axial system formed 
by the curves defining the aeolotropy are given by 

7ij-- xk,~xljek,, 
and from (2.6) and (2.16) the only non-zero components of 71j are 

713 = x~ea3+yce23 ,~ (2.17) 
723 xne13 + yqe23 . 3 

At this stage it is necessary to specify the elastic symmetry properties of the elastic material. 
In particular in (2.5) it is assumed that 

E ijk3 = E i333 = 0 (i,j, k = 1, 2), 

and for convenience we write 

E 3113 = p ,  E 3223 = q,  E 1323 = r . 

(2.18) 

(2.19) 

The classes of the various possible symmetry systems are referred to by numbers according to 
their ordering in the list given by Green and Adkins [4], pp. 13-25. 

(i) The group r = 0, p = q, as in [1], includes the classes 1-7 of the tetragonal system with 
the 03 axis as basis, the cubic system, the classes 6-12 of the hexagonal system with the 03 
axis as basis, transverse isotropy about the 03 axis, and the isotropic system. 

(ii) The group r = 0, p r q, includes the rhombic system, the classes 4-7 of the tetragonal 
system with the 01 axis, or the 02 axis, as basis, and transverse isotropy about the 01 axis or 
the 02 axis. 

(iii) The group rr pr includes the monoclinic system with the 03 axis as basis, and the 
classes 3-5 of the hexagonal system with the 02 axis as basis. 

On substitution from (2.9), (2.18) and (2.19) into (2.5) it follows that the only non-zero stress 
components are 

2p 2r / 
r13 = ~ 713 J- ~ 723, (2.20) 

z23 2r 2q 
= AB 713 + -B2 723 " 

It is also possible to express "d 3 and z 23 in terms of the warping function q~(~, t / ) -  ~b(x [-4, 7], 
y[~, 17] ) by use of (2.16) and (2.17)in (2.20)leading to 

rO 
z 13= ~ (c~-yxr162 + ~ ( d p n - y x n + x y , ) ,  I 

z23 rO qO 
= AB (~r162162 + ~ ( (o . -yx .+xy. ) .  

(2.21) 
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The condition that the strain energy function W of (2.4) is positive definite restricts the values 
of p, q, r. In fact from (2.2), (2.4) and (2.5) it is seen that 

_ _ 1  ij W -  227 71j, 

hence from (2.20) 

W = 2 {p(Byt 3) z + 2tAB713 723 + q(Ayz3)Z}/A 2B2 

= 2 {(pBT13 + rA723) 2 + (Pq- r2)(ATz3)Z}/PA ~-B2. 

Sufficient conditions for W to be positive definite are therefore p > 0 and pq - r 2 > 0, and these 
imply that q > 0. 

3. The Stress Function 

The equilibrium conditions [5] which restrict the values of the stress components 27" are 

ziJlj = 0,  (i,j = 1, 2, 3) (3.1) 

where the single bar denotes covariant differentiation with respect to the 0 i coordinate system, 
so that, since z 13, 2723, the only non-zero stress components, are functions of 01 and 0 2 only, 
and the Christoffel symbols F~3=0 (i, j=  1, 2, 3), then the only non-trivial equation occurs 
when i=  3, and this takes the form 

00-- 7 + F~j27 3~ = 0 (~ = 1, 2). (3.2) 

But from [5] it is known that 

1 8g ~ 
r ~ j  - 

g~ 80 ~' 

where g is the determinant [gij], and from (2.9) 

g = A2B 2 , 

hence (3.2) may be written as 

1 c~ (AB273~) = 0 
AB 00 ~ 

But A =p 0 and B 4: 0, hence in terms of r t/we have 

g3 (AB~23) = 0 (3.3) (AB2713) + ~ 

which is the partial differential equation that restricts q; 1 3  and 272 3. 
Now (3.3) is satisfied identically when 

2713 = tp,/AB, z 23 = - O r  (3.4) 

where ~(r tl) is referred to as the stress function, and is arbitrary in form. 
On substitution from (2.21) into (3.4), and solving for q5r and c b,, we have 

4),-  yx,  + xy, = (rAO, + pBO~)/OA (r 2 - pq) , (3.5) 

(o~- yxr + xyr = - (qAO, + rBOr z - pq) . 

Again 0 can be eliminated from (3.5), and with the use of (2.13), leads to 

~ ( B  0~) 02~ 8 ( A  8~) =2(r2 pq)OAB (3.6) P?7 + 2r +q  

and this is the partial differential equation for the determination of the stress function ff (~, rl). 
The stress components a~ i referred to the Cartesian system of coordinates x ~ are related to 
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the stress components rlj of (2.5) by the relations 

xlkx!t  ki , 

and from (2.6), (2.7) the only non-zero components are 

0-23 = xcr13+x ,  r23 , ~ (3.7) 

0-23 = Y~'c13q-Yn'C~-3 �9 ~ 

Here r 13, re3 are given by (3.4), so that 

0-13 = x , O r  (3.8) 
0-23 = (Y~ O , -  Y, Or . 

It is evident from (2.11) and (2.13) that 

xr = A y , / B ,  x ,  = - Bye~A, (3.9) 

so that on expressing 0r 0, in terms of 0x, Or, where 0x = ?,O/Ox, Oy = - OO/~y, and using (3.9), 
we have 

0 , ,  0- 3= (3.10) 

The boundary conditions [5] on C, the boundary of the cross-section S, are 

ni'c ij = 0 ,  (3.11) 

where n~ is the unit normal vector to C in the plane of S. Alternatively these conditions may 
be expressed relative to the x ~ Cartesian coordinate system by use of (3.10), and they reduce 
to the condition 

O = constant (3.12) 

on C, by a method similar to that of [6, p.129], where this constant takes different values 
in general on the various closed curves constituting C. For convenience it is usual to assume 
that 0 =0  on the external boundary of the section S. 

It may also be shown, from (3.10), (3.12) and use of Green's theorem, that the resultant 
force applied at the end cross-section of the cylinder is zero in magnitude. 

4. The Torsional Rigidity 

If the moment of the torsional couple applied to the end cross-sections of the cylinder has 
magnitude % then over the cross-section S in the x-y plane, by definition 

r = ~i (x0-23-Ya13)dxdy '  (4.1) 

where 0-~3, 023 are given by (3.8) in terms of ~r 0,- On integration over the corresponding 
region S', defined by the transformation (2.6), (2.7), and using (3.8), we have 

= is, {(xyr yxr O~-" (xy, - yx,)  0r d~ dr/, (4.2) 

since the Jacobian of the transformation is given by (2.13). 
From (3.9) a further reduction in the form of (4.2) is possible. In fact 

or  

. c = _ � 8 9  {A B } d ~ d q ,  (4.3) 
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where P = x Z +  yZ, and P r  #P/8~, P , - ~ P / & I  as usual. Equation (4.3) is that from which the 
torsional rigidity of the cylinder can be determined when 0 is known. 

�9 5. Curves of  Special  Geometry 

The curves defining the aeolotropy of the material forming the cylinder with equations of the 
type (2.8) are restricted so that 

z = z(~), (5.1) 

where z = x + iy and ~ = { + it/. Here z (~) is a regular function of the complex variable { except 
possibly at prescribed singular points in S. 

In this case the Cauchy-Riemann equations 

xe = y , ,  x, = - y~ (5.2) 

are satisfied, so that x (3, q), y (3, q) are harmonic functions, and the curves defining the aeolo- 
tropy are the level curves ~ = constant, t 1 = constant, forming an orthogonal net in S. It is noted 
from (2.10) and (5.2) that 

A = B,  (5.3) 

except possibly at prescribed points in S, so that the partial differential equation for the stress 
function 0, given by (3.6), reduces to 

~20 ~21/I ~20 --2(pq--rZ)A zO (5.4) P ~ - +  2 r ~ - ~ + q ~ q 2  = 

It is now possible to introduce associated complex functions 

(5.5) 
where # is a complex constant, and/~ is its complex conjugate. The constants/4/~ are chosen 
to be the roots of the quadratic equation 

q 2 2 + 2 2 r + p  - 0,  

so that in particular t~ = u + iv, where 

u : - r/q, v = (pq-- r2)§ 

In terms of )~, ~ equation (5.4) takes the form 

~2 o 
�89 20 .  

But from (5.2) 

then from (2.10) and (5.3) we have 

2A 2 2 2 2 2 = x~ + y~ + x~ + y, 

8 
~3 (xx~ + yy~) + (xx  n + yy,)  = ' 

or, with P = x  2 + y 2  it follows that 

In terms of )~, ~- of (5.5), alternatively 

Journal of Engineerino Math., Vol. 3 (1969) 301 q12 

(5.6) 

(5.7) 

(5.8) 

(5.9) 



Torsional rigidity of a cylinder of curvilinearly aelotropic material 307 

4A 2 = (1 +#2) •2p ~2p -2' ~2p + 2 ( l + # f i ) ~ . ~  .~ + ( l + # ) ~ Z 2 ,  (5.10) 0X ~ 

so that (5.8) is equivalent to 
a2~/ qO { de# a2e 6q2P~ 
aza~- 8 _(1+#2)~-z2 + 2 ( 1 + # r  + (1+~ 2) az2j. (5.11) 

The general solution of the partial differential equation (5.11) may be written in the form 

r = ~'o + ~u, (5.12) 

where r is a particular integral of (5.11), and ~ is a general solution of the corresponding 
homogeneous partial differential equation 

#27, 
- 0  (5.13) ~Z 0~ 

A particular integral of (5.11) is readily shown to be 

= _ q0 
~/0 T {(1 +#2)f~P d~-+ ( l+f i  2) f ~  dz+2(1 +#fi)P},  

and the general solution of (5.13) has the form 

~' = ~ ( z ) + - ~ ( ~ ) ,  

where f(z) is an arbitrary function of X. It follows that the complete solution of (5.11) may 
be written as 

qo { t 4 ( l+#~)P+re( l+f i2)JS~ ) +refO0' (5.14) 

where p=x2-k-y2=zz, and z, ~ are given by {5.1). 
The moment of the torsional couple acting on the cylinder is given by (4.3), and thus by use 

of (5.3), we find that 

~ + T( ~ d~d~. (5.15) 

But P=z~ is a function of ~, ~ from (5.1), and thus 

OP OP ~P 8P 0P 

Similar relations hold for 8r and ar hence (5.15) becomes 

f s S P  0r d~dtl �9 = - 2 r e  ,8~ 8~ ' 

or, since P = z(~)~(~), then finally 

= -2re  f ~ ~z ~r d~d~. (5.16) 

The torsional rigidity of the cylinder can be defined as z/0, where 0 is the twist per unit length 
of the cylinder during torsion. 

Example 1 : the solid elliptic cylinder 
It is assumed that the cross-section S of the cylinder has an external boundary C in the form 
of an ellipse with semi-major axis a and semi-minor axis b. This ellipse is the curve correspond- 
ing to t/= 0 in the net defined by the transformation 

z = x+iy = c cos(~+i~), ~ = ~+it/ ,  (5.17) 
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where c, ~ are real constants such that a = c cosh ~, b = c sinh a. The line of foci corresponds 
to the value q = -~ .  

The transformation (5.17) is conformal inside the curve corresponding to t /=0 except at 
the points where 3=0, t / = -  ~ and ~ = 7r, t /=-c~, and these are the loci of the ellipse. The 
curves defining the aeolotropy of the material forming the cylinder are assumed to be the 
level curves of this net, with ~/= constant on each curve. 

From (5.5) it is possible to write 

= {(/~-i)~- (fi-i)x}/(#-fi), (5.18) 

with ( as its conjugate. Hence in (5.14) the function P may be determined in terms of Z and 
by use of (5.17), (5.18), and integration leads to the expression 

0 = 2 [#fi {e i(~-0- 2~ + e-i(~-o + 2~} + ei(~+ () + e-i(r + r +-~c(X ) + -~f (~), (5.19) 

where 2 = qc 20 ( # -  fi)2/32#fi. 

Along the line of foci of the elliptic cross-section the corresponding value of t/is - ~, so that 
there 

= 2(2#fi+ e2i~+ e-2i r  fia). (5.20) 

By reference to (5A7) it is noted that the first term in the right hand member of (5.20) is a quad- 
ratic function of z, hence it is continuous across the line of foei of the elliptic section of the 
cylinder. In order to ensure that the complete expression for ~ is continuous across this line 
of loci it is sufficient to choose 

f()~) = A o +A 1 {eZi(z+u~) + e -2'(x+"~)} (5.21) 

in (5.19), where Ao and A~ are complex constants. 
The physical stress components corresponding to z la, z 2a of (3.4) are v 13, v 23, where 

V 13 = A~  "13, 1) 23 = Bz  2a . (5.22) 

But from (2.10) and (5.1)-(5.3) we find that 

A 2 = z' (~) ~'(~), 

so that by use of (3.4) equation (5.22) gives 

2i ~ 
v 13 _ iv 23 -- 

and it may readily be verified that 1)~3, v23 are finite at the foci of the elliptic cross-section of 
the cylinder, where the transformation (5.17) ceases to be conformal, i.e. where z'(O = O. 

It is also required that the function O given by (5.19), (5.21) must satisfy the condition 
O -- 0 on C, where ~ = O. It can be proved that this is so for all values of (0 ~< ~ ~< 2re) if 

Ao + J~o = - ~q c2 0 ( # -  fi)2 cosh 2c~, (5.23) 
and 

22 (e 2i~ - e-  2i~) (5.24) 
A 1 = e2ia(#_g)_e_2ia(u_g ) , 

and these values should be used in connection with (5.21). 
The moment of the torsional couple applied to the cylinder is given by (5.16), and in this 

case takes the form 

= - 2re N d . .  (5.25) 

The functions in the integrand are obtained from (5.17), (5.19), (5.21), (5.23) and (5.24), and 
on integration it is found that the only non-zero contributions come from terms independent 
of ~ in the integrand. After some reduction it may be shown that 
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~zqcgOv2 { 
z - 16(u 2 + v2 ) 4 ( 1 ,  u 2 - va)e + (u 2 + v 2) sinh 4c~ + 

2v cos 4 e u - c o s h  4ev 
(5.26) 

u z + v 2 sinh 4~v [ ' 

where u, v are defined by (5.7). In an alternative form, with ~ = (pq-r2) �89 for convenience, we 
also have 

1rc4072 {4(q - p) c~ + p sinh 4ct + 2q7 cos (4err~q) - cosh (4c~7/q) 
z -  16pq p sinh(4c~//q) .~" (5.27) 

When r=0 ,  i.e. the elastic constant E1323--0, then the torsional couple reduces to 

rcqc40{ (1 ~) P (~)~ (~)~} 
z - 16 4 - ~ + - sinh 4c~-2 tanh 2~ , (5.28) 

q 

and if further p = q, i.e. E 3113= E3e23, then in terms of a, b, the semi-axes of the elliptic section 

"c = 7zqOa 3 b3 /(a 2 + b2), (5.29) 

which for an isotropic material is a well-known result [6, p. 122]. 
In (5.27)-(5.29), with p >0, q >0, 72 >0, since (i) z is continuous for cr >0, (ii) z = 0  for 

c~ = 0, and (iii) dz/dc~ > 0 for c~ > 0, then it follows that z > 0 for e > 0 (p > 0, q > 0, 72 > 0). This 
must be so since a twist in a certain sense should be the result of a couple applied to the cylin- 
der in the same sense. 

In order to indicate how the torsional rigidity varies with changes in the section geometry 
and in the elastic coefficients of the cylinder, it is lound convenient to introduce the dimension- 
less quantities z*= 16z/~qOa 4, b* =b/a, p*=p/q, r*=r/q into (5.27). 

5 

3 

b*= 0.8 

b*= 0.6 

b*= 0.4 

0.5 
p* 

Figure 1. Variation of z* with p* for r*=0.1. 

1 , 0  ' 

Fig. 1 shows that z* increases with p* for fixed r* and b*, the rate of increase being greater 
for larger values of b*, i.e. as the sections approach the circular form. Fig. 2 shows that z* 
increases with b* for fixed p* and r*, i.e. as the cylinder section approaches the circular form, 
and the rate of increase is greater for smaller values of r*. 
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0.6 r =0  

];~ 0.4 

O.2 

r = 0~3 

O ~  
o 0 .5  

b~ 

Figure  2. Var ia t ion  of v* wi th  b* for p* =0.1.  

1.O 

Example 2: the hollow elliptic cylinder 
It is assumed that the cylinder has internal and external cross-sectional contours in the form 
of confocal ellipses, these being the level surfaces tl=~2, cq (>c~2) respectively in the net 
defined by 

z = c c o s C ,  C = ~ + i t / ,  

where c is a real constant. As in Example 1 integration of (5.14) leads to 

r = 2[#/] {e i(r + e- i(r + ei(r + 0 + e- i(~ + 0] + r e f ( z ) .  (5.31) 

But it is required that r  when t l=~l  so that 

2 {#/7 (e- z~l + e2~1) + e2,r e- 21~} + re fOh)  = 0, (5.32) 

where Z1--~ +#~1. Again it is required that 0 =constant  when t/= ~2, so that 

2 {#/7 (e- 2~2 + eZ~2) + e21~+ e-  2i~} + re f(z2) = constant,  (5:33) 

where Z2 = ~ + #c~2. 
Equations (5.32), (5.33) may be satisfied by choosing 

f (z) = Ao + A1 e2iZ+ Az e -2ix, 

where Z = ~ + #q, and 

�89 + Ao) = constant - 22#/7 cosh 2e2, 

A1 = A2 e-2iu(~+~2) = 2 2 ( e 2 i ~ - e 2 ~ )  
e2i(#c~l + p.c~2) __ e2i(#c(2 +,~etl) " 

The torsional couple on the cylinder has moment 

z = - 2re ~ dE dtl, 
o ~ ~  

and reduces on integration to 
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c407z {4(q-p)fl+p(sinh 4e~-s inh  4~2) + 4q7 cos(2rfl/q)-cosh(27fl/q ) (5.34) 
z - 16pq p sinh (27fi/q) J' 

where fl = el - c~2. 
In particular if r = 0, then further 

{ ( (5} nqc40 4fi 1 - (sinh 4 ~ -  sinh 4~2)-  4 tanh/~ (5.35) z 16 q q 

and again if p = q then 

7rc4pO (sinh 4 c q -  sinh 4 e e -  4 tanh fl) (5.36) 
z -  16 

Which for an isotropic material is a known result, [7, p. 394]. 
In (5.31)-(5.33) with p >0, q >0, ~2>0, since (i) ~ is continuous for ~ >  ~2, (ii) z = 0  for 

71 =a2, and (iii) dz/da~ >0  for 7a >~2, then it follows that z >0  for a~ >~2 (P >0, q >0, 72 >0), 
as is to be expected. 

Appendix: change of axis of twist 

The displacement components ui as agiven by (2.15), when the cylinder undergoes a twist 
about the z-axis, are in an alternative notation 

ul = -Oyz, Uz = Oxz, u3 = O•(x, y). (A1) 

If the twist takes place about a line parallel to the z-axis through the point (~, y) in S, then the 
corresponding displacement components are 

~ = -O(y -y ) z ,  ~2 = O(x-X)z, u3 = O~(x, y), (A2) 

where q5 (x, y) is a possibly different function from q~ (x, y). The corresponding non-zero stress 
components ,~3j and -c 3j (/= 1, 2) both satisfy equilibrium equations of the type (3.1) in S, and 
boundary conditions of the type (3.11) on C. 

It follows that the tensor difference functions 

T3J .= T3j_ ~3J 

are such that 

T3J[ j = 0 in 
and 

(j = 1, 2) (A3) 

S,  (A4) 

n~T3J=0 on C. (A5) 

It is now possible to introduce the function 

= ~b - qS- yx +/~y, (A6) 

and from (A4) it follows that 

(~T3J) [ j  = 41 jT  3j= ~, jT 3j (A7) 

in S. An application of the tensor form of Gauss' theorem gives 

fs (~T3J)l jdS = f c C~nj T3J ds = O 

by (A5), hence from (A7) we have 

fs~),jr3JdS=O. (A8) 

But from (2.21), the corresponding equations for ~3j, and (A6), it is noticed that 
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T 3 t pO rO ] = ~ 4,~ + ~ ~ , ,  
(19) 

rO qO I T32 

so that, on  rearrangement,  (A8) becomes 

s ~ (at + pB ~" + pq-r--~ 2 qa~ d S = O  (A10) �9 pB 2 " 

But A 2, B 2, p, p q - r  2 are positive quantities, so that  

05~= ~ ,  = 0 in S ,  

and thus �9 = constant  in S, or  by use of (A6) 

= q5 - 37x + 2y + constant  (A11) 

in S. 
The displacement ~i of (A2) differs f rom ui of (A1) by a rigid body  displacement, and the 

stress field -c 3i of  (2.21) is unchanged in S. So also is o3i of (3.7), and thus from (4.1) the moment  
z of the torsional couple is invariant under  a parallel translation of the axis of twist of the 
cylinder. 
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